Some Consequences of Excess Load on the
Echo Replicated File System*

Andy Hisgen, Andrew Birrell, Charles Jerian,
Timothy Mann, Garret Swart
DEC Systems Research Center
130 Lytton Avenue
Palo Alto, CA 94301, USA
August 1992

Abstract

Understanding the workload is crucial for the success of a repli-
cated file system. The system must continue to provide service in the
presence of ezcess load, otherwise, its availability will be compromised.
This paper presents some shortcomings of the Echo replicated file sys-
tem in handling ezcess load. We discuss the consequences of ezcess load
on our primary-secondary design, on our communication software, on
our election algorithm, on memory usage in our file servers, and on
our distributed client caching algorithm, and we speculate on possible
solutions.

Introduction

Echo is a replicated distributed file system that has been designed and built
at DEC SRC [3, 4, 8]. Exploiting replication to increase availability has
been a major goal. The system has been in active use at our laboratory
since September 1990, and became the principal file system for about 50
people in January 1991. On the whole, we have been satisfied with Echo.
But there are shortcomings in the design and implementation of Echo in its
handling of excess load. This paper reports on those problems, and on some
possible solutions.

Echo’s goal for availability is to tolerate a single failure of a server com-
ponent and keep providing service. Our failure model is that server CPU’s

*To appear in the Proceedings of the Second Workshop on Management of Replicated
Data, IEEE Computer Society, November 1992.



and disks are fail-stop, but clients can be Byzantine [7]. With Echo, Byzan-
tine clients can cause denial of service by generating load, but cannot cause
corruption of data or of other clients. We assume that the network can par-
tition and can lose, replay, or delay messages. Server machines are assumed
to have timers whose rates differ by a known bound.

The Echo file system semantics are one-copy serializability. Clients are
thus not permitted to observe differences between replicas.

Overview of Echo

This section presents a summary of those aspects of Echo that are needed
for understanding the rest of the paper.

In Echo, data storage is implemented by server computers and disks. As
independent choices, an Echo hardware configuration may have replicated
disks and/or multiple server computers. In general, disks are multi-ported
and connected to several server computers. Each such disk has a multi-
port arbiter, which recognizes at most one connected server computer as its
owner at a time. Ownership is subject to timeout. Echo can also make use of
single-ported disks; in this case, software on the single physically-connected
server simulates the multi-port arbiter, and other logically-connected server
computers access the disk via this server over the network.

The server computers are organized in a primary-secondaries scheme.
Briefly, a primary is elected by having each server try to claim ownership of
amajority of the disks: if a server succeeds in claiming a majority, it becomes
the primary. In configurations with an even number of disks, witnesses are
used to break ties [10]. A version-stamp scheme is used to determine which
disks have up-to-date data [8].

Because disk ownership is subject to timeout, the current owner must
refresh its ownership periodically. After a failure of the primary, a secondary
must wait for the disk ownership timeouts to expire before it can become
the new primary. The waiting is required in order to guarantee that there
is never more than one primary. Thus, the ability to fail over quickly is
dependent upon short ownership timeouts with frequent refresh.

In general, upon any failure of a server disk or server CPU, or of the
communication medium between server disks and server CPU’s, a new elec-
tion may be held. Relatively good communication is required between the
CPU’s and disks that make up a single replicated service, with low latency
and high bandwidth.

During service, all client reads and updates are sent to the primary. For




client updates, the primary writes to all disks that are up and in commu-
nication. For client reads, only one disk needs to be read, since there is at
most one primary and all update traffic goes through it.

Echo employs a distributed caching algorithm between clients and servers,
in which servers keep track of which clients have cached what files and direc-
tories 5, 6, 9]. This caching information is replicated in the main memories
of the server computers. In order to cache a file or directory, the client
machine must first call the primary server to request the appropriate cache
token, read or write. If another client machine(s) holds a conflicting token,
the server will call the token back from that client(s). Before returning to
the original client machine, the primary will first RPC to the secondary to
inform it about granting the token.

The tokens that a client machine holds are associated with its session.
The client must refresh its session by calling the server periodically. The
refresh makes its session valid for a time period that is agreed upon by both
the server and the client, the lease [2]. If an RPC from the server to the
client to take back a token fails (e.g., because of network partition), then the
server marks the session as invalid, and after waiting for the lease to expire,
revokes the tokens associated with the session. Attempts to refresh an invalid
session are rejected. This scheme ensures that, even in the presence of a
network partition, when the server revokes a token, the client will have

already concluded because of the passage of time that its cache is no longer
valid.

Consequences of Load
Primary-Secondary

As explained above, Echo uses a primary-secondary replication scheme. In
practice, we have used dual-ported disks, and paired servers, with each disk
connected to both servers. We configure the system so that one server of the
pair is the primary for one set of disks, S1, and the secondary for another set
of disks, S2. The other server is then the primary for §2 and the secondary
for S1. When both servers are up, we achieve some load balancing between
the pair, at the granularity of an entire set of disks [3].

However, when one server is down, the remaining server in the pair must
handle the entire load. Sluggishness caused by excess load may be unaccept-
able to applications, and extreme sluggishness is the practical equivalent of
the system being unavailable. We can define availability as the proportion



of time during which the system responds to requests within an agreed upon
threshold. Thus, availability is a real-time problem. The current Echo con-
figuration in our lab has eight servers, arranged in four pairs, and one pair
of servers has more disks than the others. With this server pair, the system
is noticeably sluggish when one server is down.!

During the Echo project, we neglected to build any tools for estimating,
measuring, or characterizing the workload. This was a strategic mistake.
For example, we should have built a tool to measure the load on a file server
pair with both servers up, to be able to predict whether the system would
become overloaded with one server down. Ideally, when presented with a
workload by a customer and a performance target, we should be able to say
whether that workload and target can be handled, how much hardware is
needed, and how to configure the system.

Communication Software

Echo is built using SRC’s RPC system, which offers excellent performance
under moderate load [13]. The RPC system has a fixed number of kernel
buffers which are mapped into the address space of every process, including
the file server process. While an RPC is in progress, two buffers are in use,
one each on the caller and the callee machines. Having an excessive number
of in-progress RPC’s will exhaust all the buffers, causing other RPC’s and
pings of the in-progress RPC’s to fail.

The RPC interface between the Echo client and server has procedures
that can be long-running, in two major categories. First, we pipeline updates
from the client to the server. The pipeline is built on top of RPC—each
update operation is an individual RPC, and the return of an RPC to the
client implies that the update is stable on disk. Each client machine can
have multiple update RPC’s in progress, and there are many clients. The
second source of long-running RPC’s is the distributed caching algorithm.
As explained above, to acquire a cache token, a client RPCs to the primary
server. If another client holds a conflicting token, the server makes a nested
RPC on that client. If that client has a write token and dirty data in its
cache, it will have to RPC the updates back to the server before returning

!By using a different connection topology for servers and disks, other than strict pairing,
we could have arranged that after a crash of one server, its load is shifted to more than
one of the remaining servers: for the disks connected to a particular server, the other ports
on the disks should be spread across multiple other servers. Excess server capacity is still
required, but not a factor of two.



from the nested RPC.

Furthermore, the long-running RPC’s interact badly with another aspect
of Echo: if a disk replica or witness is sluggish, but not so badly as to cause
a new election, RPC’s to update or read can block in the server. But this
ties up RPC buffers and consumes CPU resources pinging RPC’s, tending to
make the system even more overloaded, and so on. Extreme load can cause
the primary to not refresh its ownership of the disks within the ownership
timeout, triggering a new election.

We could have redesigned the RPC interfaces to eliminate the long-
running calls. The pipelined update RPC’s could return early, with a
(piggy-backed) acknowledgement later that the update is stable on disk.
Alternatively, the pipeline could be layered on a stream communication fa-
cility like TCP. The token calls for which another client holds a conflicting
token could post the request and return early, with a separate call-back later
to say that the request has been granted: this scheme substitutes the scarce
kernel RPC buffer with ordinary memory in the file server to remember the
posted request,.

Instead of doing this redesign, and coordinating the changes to clients
and servers with our user community, we instead persuaded SRC’s RPC
implementors to increase the number of kernel buffers. However this expe-
dient hack would collapse again if we doubled or tripled the number of client
machines,

An alternative approach to solving the buffer exhaustion problem would
be to make RPC resilient to temporary buffer exhaustion. For example, a
fixed amount of kernel resources could be dedicated to providing an up-down
service — if the up-down service says that the callee is up, then RPC’s keep
being retried, even if buffers are exhausted. A subtlety with this approach
is deciding what it means for the callee to be up—it should mean that the
callee process is still alive, and not just the callee kernel. And if the callee
process is really making no progress, it would be better to declare it to be
down, in order to insulate other servers from it. To determine callee process
progress, a software implementation of a dead-man’s handle in the callee
would be prudent [11].

Election

We have already mentioned the possibility that excess load can trigger an
election. Excess load can also cause an election to take a long time to
converge.



Memory Usage

The Echo file server process is implemented in Modula-2+4, SRC’s dialect
of Modula-2 which includes threads and garbage collection [12]. Garbage
collection is convenient for implementing a long-running server, because it
eliminates two classes of errors: storage leaks and dangling references. SRC’s
Modula-2+ garbage collector is incremental and runs in parallel with the
mutator, exploiting the Firefly multiprocessor hardware [1, 14].

The potential concerns in using garbage collection in a system like Echo
are: (i) bounding any pauses caused by collection, so as not disrupt RPC
or the election algorithm, and (ii) ensuring that collections occur frequently
enough that storage is not exhausted. Although the SRC collector is engi-
neered to avoid these problems in the normal case, it does not make guar-
antees. For example, if the collector cannot keep up with the mutator over
a sufficiently long period of time, it will throttle back certain mutator oper-
ations, possibly leading to excessive pauses. We believe that in practice the
Echo servers have not suffered from such problems, but excess load could
trigger them.

Client Machine Caching Algorithm

Earlier, we summarized the distributed algorithm for caching data on clients,
and how it uses leases and refresh. Here, we make two observations. First,
when the server calls back on the client to take away a token, the RPC failure
time-out, that is, the time for which retransmissions will be attempted when
the callee is not acknowledging, should be at least as long as the lease.
Observe that in the case where the RPC fails, we are going to have to wait
for the lease to expire anyway, and so making the RPC failure time-out at
least this large gives the client the maximum opportunity to respond.
Second, an extremely overloaded client machine can cause the RPC from
the server to the client to time-out and fail, because the client is too over-
loaded to acknowledge the RPC. We have seen this effect in our lab, and
believe that it occurs when the client machine is paging heavily. The con-
sequences are more serious than we would like: a client with dirty data in
its cache must discard the data, meaning that it won’t become permanent,
rather, it is lost forever. Because Echo permits write-behind, the applica-
tion that created this dirty data may have already exited, and is no longer
around to receive an error notification.? We could solve the problem of the

3 An application may force dirty data to the server using the sync or fsync system calls.



RPC from the server to the client timing out and failing by dedicating a por-
tion of the client machine to handling RPC pings and acknowledgements,
by pinning the relevant code and data and running threads at high priority.
(Of course, processing the pings and acknowledgements does not guarantee
that the body of the call makes progress, and the cache token will not be
relinquished until it does. Therefore, if the overloaded client machine is
sharing a file with another client, the other client may block for a long time
waiting for the overloaded client.)

Conclusion

Load issues are particularly important for a replicated system, because con-
ditions of excess load cannot be assumed to be independent between different
components. Depending on the details of the design, conditions of excess
load can even be mutually reinforcing.

References

[1] John DeTreville. Experience with concurrent garbage collectors for
Modula-2+. Technical Report 64, DEC Systems Research Center, Palo
Alto, California, November 1990.

[2] Cary Gray and David Cheriton. Leases: An efficient fault-tolerant
mechanism for distributed file cache consistency. In Proc. 12th Symp.

on Operating Systems Principles, pages 202-210. ACM SIGOPS, De-
cember 1989.

[3] Andy Hisgen, Andrew Birrell, Chuck Jerian, Timothy Mann, Michael
Schroeder, and Garret Swart. Granularity and semantic level of repli-
cation in the Echo distributed file system. In Proc. of the Workshop
on the Management of Replicated Data, pages 2-4. IEEE Computer
Society, November 1990.

(4] Andy Hisgen, Andrew Birrell, Timothy Mann, Michael Schroeder, and
Garret Swart. Availability and consistency tradeoffs in the Echo dis-
tributed file system. In Proc. Second Workshop on Workstation Oper-
ating Systems, pages 49-54. IEEE Computer Society, September 1989.

[5] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols,
M. Satyanarayanan, Robert N. Sidebotham, and Michael J. West. Scale



[10]

and performance in a distributed file system. ACM Transactions on
Computer Systems, 6(1):51-81, February 1988.

Michael L. Kazar. Synchronization and caching issues in the Andrew
file system. In Winter Conference Proceedings, pages 27-36. USENIX
Association, February 1988.

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
generals problem. ACM Transactions on Computer Systems, 4(3):382-
401, July 1982.

Timothy Mann, Andy Hisgen, and Garret Swart. An algorithm for data
replication. Technical Report 46, DEC Systems Research Center, Palo
Alto, California, June 1989.

Michael N. Nelson, Brent B. Welch, and John K. Qusterhout. Caching
in the Sprite network file system. ACM Transactions on Computer
Systems, 6(1):134-154, February 1988.

Jehan-Francois Paris. Voting with witnesses: A consistency scheme for
replicated files. In Proc. 6th International Conference on Distributed
Computer Systems, pages 606-612. IEEE Computer Society, 1986.

John Robinson and Eric Roberts. Software fault-tolerance in the
Pluribus. In Proc. of the 1978 National Computer Conference. AFIPS,
June 1978.

Paul Rovner. Extending Modula-2 to build large, integrated systems.
IEEE Software, 3(6):46—57, November 1986.

Michael D. Schroeder and Michael Burrows. Performance of Firefly
RPC. ACM Transactions on Computer Systems, 8(1):1-17, February
1990.

Charles P. Thacker and Lawrence C. Stewart. Firefly: A multiprocessor
workstation. In Proc. of the Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
ACM and IEEE Computer Society, October 1987.



